May 17, 2023

STRUCTURAL CALCULATIONS

(Permit Submittal)

SIPIORA RESIDENCE DADU

7215 93rd Ave SE Mercer Island, WA 98040

Quantum Job Number: 22580.02

Prepared for: LAINIE SIPIORA 7215 93rd Ave SE Mercer Island, WA 98040

Prepared by: QUANTUM CONSULTING ENGINEERS 1511 Third Avenue, Suite 323 Seattle, WA 98101 TEL 206.957.3900

QUANTUM | CONSULTING ENGINEERS

1511 Third Avenue, Suite 323 Seattle, WA 98101 TEL 206.957.3900 FAX 206.957.3901

SIPIORA RESIDENCE DADU

7215 93RD AVE SE MERCER ISLAND, WA 98040

QUANTUM JOB NUMBER: 22580.02

TABLE OF CONTENTS

DESIGN CRITERIA	A-1
GRAVITY FRAMING	B-1
LATERAL DESIGN	C-1

QUANTUM | CONSULTING ENGINEERS

1511 Third Avenue, Suite 323 Seattle, WA 98101 TEL 206.957.3900 FAX 206.957.3901

SIPIORA RESIDENCE DADU

7215 93RD AVE SE MERCER ISLAND, WA 98040

QUANTUM JOB NUMBER: 22580.02

DESIGN CRITERIA

Structural Design Criteria

<u>Building Code:</u> 2018 International Building Code with City of Mercer Island Amendments

Building Department: City of Mercer Island

Seismic Criteria Wind Criteria

S_s: 1.00 Wind Speed: 97 MPH 1.45 l_e: S₁: 0.50 Seismic Soil Site Class: Risk Category: D Ш S_{ds}: 1.16 Seismic Design Category: D Wind Exposure: С S_{d1} : 0.60 Cs: 0.18 Kzt: 1.0

R: 6.50 Light-Framed Wood Walls Sheathed With Wood Structural Panels

Geotechnical Criteria

Allowable Bearing Pressure 1500 PSF

Minimum Footing Width Continuous: 18" min., Isolated: 24" min.

Frost Depth 18" min.

Active Soil Pressure (Restrained/Unrestrained) 50 PCF / 35 PCF

Passive Soil Pressure 350 PCF Coefficient of Friction 0.35

Materials Criteria

Concrete (28 Day Strength):

Foundation/Slab on Grade F'c= 2,500 PSI

Reinforcing Steel:

Grade 60 (#5 bar and larger) Fy= 60,000 PSI Grade 40 (#4 bar) Fy= 40,000 PSI

Wood Framing:

2x, 3x & 4x Framing Members HF#2 or DF#2

6x Framing Members DF#1

Glulam Beams 24F-V4 (V8 @ Cont. and Cant. Members)

LVL Members - Beams & Headers 1.9 E LVL Wood Sheathing APA RATED

ſ		Quantum Consulting Engineers LLC	Project: Sipiora Residence DADU	Date:	5/16/23	Job No:	22580.02
١	l l	1511 Third Avenue, Suite 323		Designer:	BSD	Sheet:	1
Į.		Seattle, WA 98101	Client: Lainie Sipi o ra	Checked By:			

Residential Building Loads

Snow LoadRoof25 psfLive LoadResidential40 psfResidential exterior decks / balconies60 psf

Assembly Loads

Roof Loads		Comments
Standard Roofing	4.0 psf	
1/2" Ply. Sheathing	1.5 psf	
Joists @ 24" o.c.	2.1 psf	
R38 Insulation	1.0 psf	
5/8" GWB	2.8 psf	
Lights, ducts	0.5 psf	
Miscellaneous	1.1 psf	
Total:	13.0 psf	SL=25 PSF

Interior Wall Framing						
5/8" GWB		2.8 psf				
2x4 @ 16" o.c.		0.9 psf				
5/8" GWB		2.8 psf				
Mech./Elec.		0.5 psf				
Misc.		1.0 psf				
	Total:	8.0 psf				

Roof Deck Loads	Gravity:	Comments
Wood Decking	3.0 psf	
Membrane Roofing	2.2 psf	
3/4" Ply. Sheathing	2.3 psf	
2x + Joists @ 16" o.c.	2.6 psf	
r38 Insulation	1.0 psf	
5/8" GWB – 2 Layers	5.2 psf	

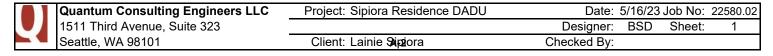
0.7 psf

1.0 psf

18.0 psf LL=60 PSF

Typical Floor Loads	Comments	
Flooring	3.0 psf	
3/4" Ply. Sheathing	2.3 psf	
Floor Joists @ 16" o.c.	2.5 psf	
5/8" GWB	2.8 psf	
Lights, ducts	0.8 psf	
Miscellaneous	0.6 psf	
Partitons	-	
Total:	12.0 psf	LL =40 PSF

Exterior Wood Stud Wall						
Siding	2.3 psf					
1/2" Plywood	1.5 psf					
2x6 studs @ 16 " o.c.	1.7 psf					
Insulation	0.5 psf					
1/2" GWB	2.2 psf					
Mech./Elec.	0.5 psf					
Misc.	1.3 psf					
Total:	10.0 psf					


Deflection Criteria

Lights, ducts

Total:

Miscellaneous

RoofWallsL/120*flexible finishesFloorLive Load: L/240L/240*brittle finishLive Load: L/360Total Load: L/180L/240*supporting glassTotal Load: L/240

▲ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address: 7215 93rd Ave SE, Mercer Island, WA 98040, USA

Coordinates: 47.5380446, -122.2154268

Elevation: 239 ft

Timestamp: 2023-02-06T16:37:12.263Z

Hazard Type: Seismic

Reference Document: ASCE7-16

Risk Category: II

Site Class: D-default

Basic Parameters

Name	Value	Description
S _S	1.454	MCE _R ground motion (period=0.2s)
S ₁	0.503	MCE _R ground motion (period=1.0s)
S _{MS}	1.745	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.163	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

^{*} See Section 11.4.8

▼Additional Information

Name	Value	Description
SDC	* null	Seismic design category
F _a	1.2	Site amplification factor at 0.2s
F _v	* null	Site amplification factor at 1.0s
CR _S	0.902	Coefficient of risk (0.2s)
CR ₁	0.898	Coefficient of risk (1.0s)
PGA	0.622	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.747	Site modified peak ground acceleration
T _L	6	Long-period transition period (s)
SsRT	1.454	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.612	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	4.303	Factored deterministic acceleration value (0.2s)
S1RT	0.503	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.559	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.64	Factored deterministic acceleration value (1.0s)
PGAd	1.424	Factored deterministic acceleration value (PGA)

^{*} See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

▲ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address: 7215 93rd Ave SE, Mercer Island, WA 98040, USA

Coordinates: 47.5380446, -122.2154268

Elevation: 239 ft

Timestamp: 2023-02-06T16:36:47.760Z

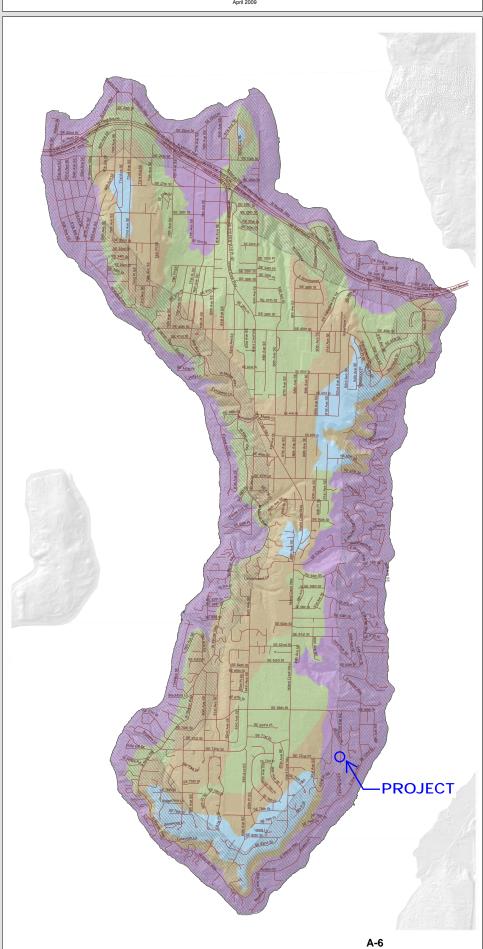
Hazard Type: Wind

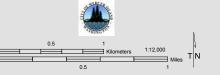
ASCE 7-16		ASCE 7-10		ASCE 7-05	
MRI 10-Year	67 mph	MRI 10-Year	. 72 mph	ASCE 7-05 Wind Speed	85 mph
MRI 25-Year	73 mph	MRI 25-Year	79 mph		
MRI 50-Year	78 mph	MRI 50-Year	85 mph		
MRI 100-Year	83 mph	MRI 100-Year	91 mph		
Risk Category I	92 mph	Risk Category I	100 mph		
Risk Category II	97 mph	Risk Category II	110 mph		
Risk Category III	104 mph	Risk Category III-IV	115 mph		
Risk Category IV	108 mph				

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

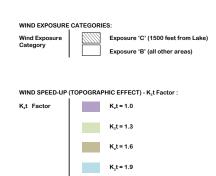

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.


Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Mercer Island Wind Exposure and Wind Speed-Up (Topographic Effect)

by Development Services Group (DSG), City of Mercer Island
April 2009



WIND EXPOSURE CATEGORIES & WIND SPEED-UP FACTORS (ICC Section 1609 & ASCE 7-05 Chapter 6)

It is the responsibility of the Owner (or their Design Professional) to review site conditions and determine the Kzt factor to be utilized for each specific project. The Kzt factors and wind exposure categories indicated on this map are the minimum values accepted by the City of Mercer Island without requiring the design professional to submit additional calculations and supporting topographic documentation (to verify the values utilized in their wind load determination).

Please note – The Kzt values indicated on this map are approximations based upon periodic calculations of representative samplings around Mercer Island. These values are intended for City of Mercer Island's plan review purposes only.

GENERAL NOTES FOR WIND EXPOSURE AND WIND SPEED-UP MAP

This map is the Wind Exposure Category and Wind Speed-up (Topographic Effects) Map for the City of Mercer sisland. This map shows the minimum wind exposure category and the minimum wind speed-up. "K,t" factor, which will be accepted without site specific documentation and calculation.

Other wind speed phenomena may occur on Mercer Island that is not specifically indentified on this map. It is the responsibility of the Owner (or their Design Professional) to review site conditions and determine the appropriate design wind speed and exposure category for their specific project and location.

This map is for the sole use of the staff of the City of Mercor Island's Development Services a Group (DSG) for the purposes of permit application evaluation. This map provides DSG staff ageneral assessment of Wind Exposure Category and Winn Speed-up (Topographic Effects). All areas have not been specifically evaluated and there may be locations that are not correctly represented on this map. It is the responsibility of individual property owners and map users to evaluate risk associated with their proposed development. No site-specific assessment of risk is implied or otherwise indicated by the City of Mercer Island with this map.

Information about data used for the map, references, and data limitation are all described the associated 'Read Me' document. The digital version of this map is accompanied by a meta data file containing pertinent information about map construction. This data map is available on the Cky of Mercer Island website.

The topographic effect of wind speed-up at isolated hills, ridges, and escarpments constituting abrupt changes in the general topography, located in any exposure category, that meet all of the conditions noted in ASCE 7-05 Minimum Design Loads for Buildings and Other Structures, Section 6.5.7.

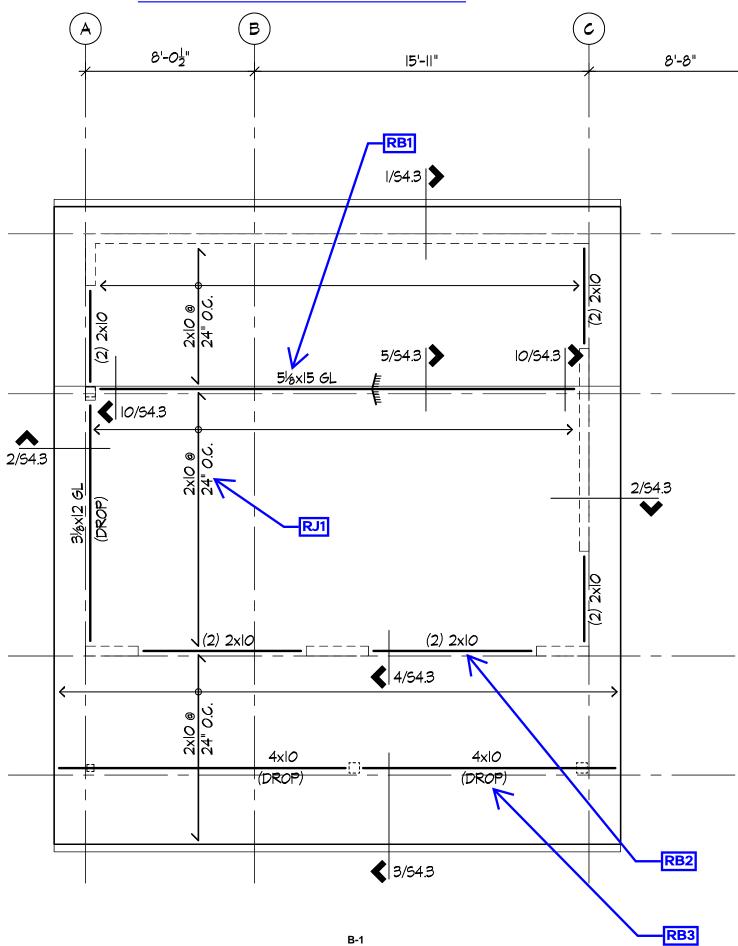
The wind exposure category that applies where the site in question is located a minimum of 1500 feet from the shoreline and the mean roof height is less than or equal to 30 feet per IBC 2006 section 1609.4.3.

Exposure C: The wind exposure category that applies where the site in question is located within 1500 feet from the shoreline per IBC 2006 section 1609.4.3.

Minimum 85 mph 3-second gust per IRC Figure R301.2(4)

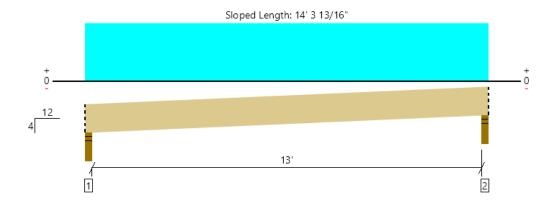
QUANTUM | CONSULTING ENGINEERS

1511 Third Avenue, Suite 323 Seattle, WA 98101 TEL 206.957.3900 FAX 206.957.3901


SIPIORA RESIDENCE DADU

7215 93RD AVE SE MERCER ISLAND, WA 98040

QUANTUM JOB NUMBER: 22580.02


GRAVITY FRAMING

ROOF FRAMING KEY PLAN

DADU Roof, RJ1 - DADU 1 piece(s) 2 x 10 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	554 @ 2 1/2"	3281 (3.50")	Passed (17%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	471 @ 1' 1/4"	1915	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1769 @ 6' 9 1/2"	2334	Passed (76%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.237 @ 6' 9 1/2"	0.694	Passed (L/702)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.387 @ 6' 9 1/2"	0.925	Passed (L/430)		1.0 D + 1.0 S (All Spans)

Member Length: 14' 6 7/8"

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 4/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

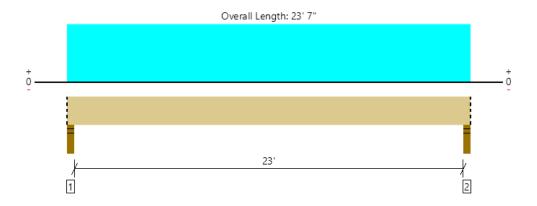
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	215	340	554	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	215	340	554	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 1" o/c	
Bottom Edge (Lu)	14' 4" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to 13' 7"	24"	15.0	25.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Bryce Dacus Quantum Consulting Engineers (206) 957-3900 BDacus@quantumce.com	B-2	W

DADU Roof, RB1 - DADU Ridge 1 piece(s) 5 1/8" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4982 @ 2"	11211 (3.50")	Passed (44%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	4330 @ 1' 6 1/2"	15618	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	28546 @ 11' 9 1/2"	42790	Passed (67%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.612 @ 11' 9 1/2"	1.163	Passed (L/456)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	1.071 @ 11' 9 1/2"	1.550	Passed (L/261)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- . Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 0.97 that was calculated using length L = 23' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

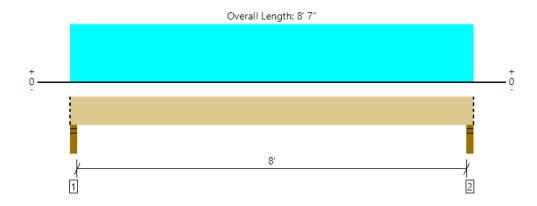
	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.56"	2132	2850	4982	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.56"	2132	2850	4982	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	23' 7" o/c	
Bottom Edge (Lu)	23' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 23' 7"	N/A	18.7	-	
1 - Uniform (PSF)	0 to 23' 7" (Front)	9' 8"	16.8	25.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

DADU Roof, RB2 - DADU slider 2 piece(s) 2 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1614 @ 2"	6563 (3.50")	Passed (25%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1214 @ 1' 3/4"	3830	Passed (32%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3199 @ 4' 3 1/2"	4059	Passed (79%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.073 @ 4' 3 1/2"	0.412	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.124 @ 4' 3 1/2"	0.550	Passed (L/800)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- . Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

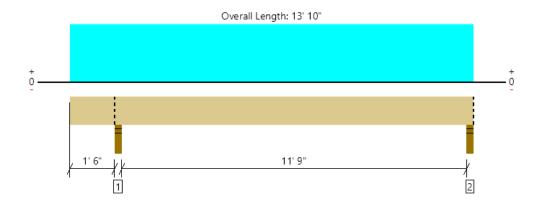
	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	666	948	1614	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	666	948	1614	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	7.0		
1 - Uniform (PSF)	0 to 8' 7" (Front)	8' 10"	16.8	25.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Bryce Dacus Quantum Consulting Engineers (206) 957-3900 BDacus@quantumce.com	B-4	W

DADU Roof, RB3 - DADU deck 1 piece(s) 4 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2065 @ 1' 7 3/4"	7656 (3.50")	Passed (27%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1384 @ 2' 6 3/4"	4468	Passed (31%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	4674 @ 7' 8 13/16"	5166	Passed (90%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.192 @ 7' 8 1/16"	0.601	Passed (L/753)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.327 @ 7' 8 3/16"	0.801	Passed (L/441)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

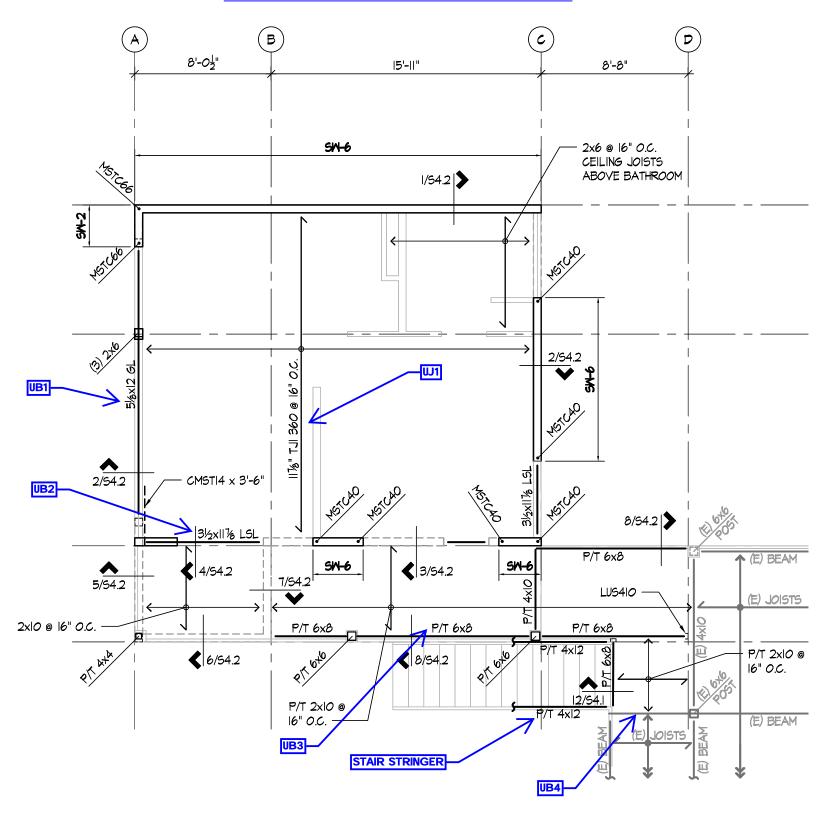
- . Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- · Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	867	1198	2065	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	677	944	1621	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

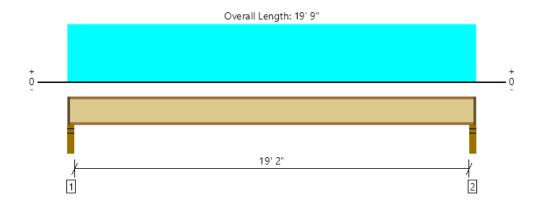
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	13' 10" o/c	
Bottom Edge (Lu)	13' 10" o/c	

[•]Maximum allowable bracing intervals based on applied load.


			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 13' 10"	N/A	8.2		
1 - Uniform (PSF)	0 to 13' 10" (Front)	6' 2"	16.8	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.



UPPER FLOOR FRAMING KEY PLAN

DADU Floor, UJ1 - DADU 1 piece(s) 11 7/8" TJI ® 360 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	717 @ 2 1/2"	1202 (2.25")	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	703 @ 3 1/2"	1705	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3426 @ 9' 10 1/2"	6180	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.382 @ 9' 10 1/2"	0.483	Passed (L/607)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.526 @ 9' 10 1/2"	0.967	Passed (L/441)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	48	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

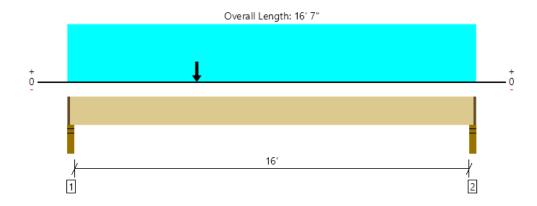
- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: 1/2" Gypsum ceiling, Perpendicular Partitions.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.75"	197	527	724	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.75"	197	527	724	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' o/c	
Bottom Edge (Lu)	19' 7" o/c	

- $\bullet \mathsf{TJI}$ joists are only analyzed using Maximum Allowable bracing solutions.
- $\bullet \mbox{Maximum allowable bracing intervals based on applied load. } \\$


			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 19' 9"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Bryce Dacus Quantum Consulting Engineers (206) 957-3900 BDacus@quantumce.com		В-7

DADU Floor, UB1 - DADU Garage HDR 1 piece(s) 5 1/8" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3669 @ 2"	7207 (2.25")	Passed (51%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3633 @ 1' 3 1/2"	12495	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	18253 @ 5' 3"	28290	Passed (65%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.274 @ 7' 6 1/2"	0.406	Passed (L/713)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.513 @ 7' 7 1/16"	0.813	Passed (L/380)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 16' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	1712	332	1958	3670	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	914	332	892	1831	1 1/4" Rim Board

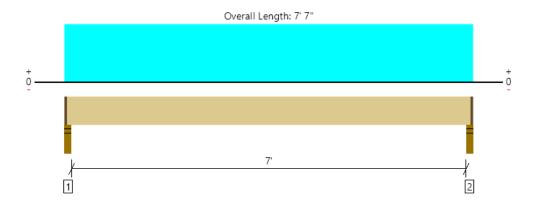
[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	16' 5" o/c	
Bottom Edge (Lu)	16' 5" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	1 1/4" to 16' 5 3/4"	N/A	14.9			
1 - Uniform (PSF)	0 to 16' 7" (Front)	1'	15.0	40.0	-	Default Load
2 - Point (lb)	5' 3" (Front)	N/A	2132	-	2850	Linked from: RB1 - DADU Ridge, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	Ì
Bryce Dacus Quantum Consulting Engineers (206) 957-3900 BDacus@quantumce.com	В-8	Q

DADU Floor, UB2 - DADU 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2799 @ 2"	4922 (2.25")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1906 @ 1' 3 3/8"	8590	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4988 @ 3' 9 1/2"	15953	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.058 @ 3' 9 1/2"	0.181	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.080 @ 3' 9 1/2"	0.363	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

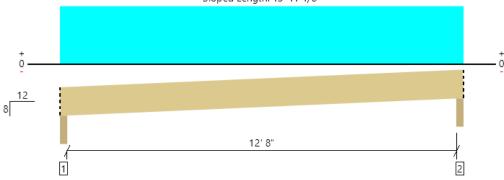
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	785	2092	2877	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	785	2092	2877	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 5" o/c	
Bottom Edge (Lu)	7' 5" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 7' 5 3/4"	N/A	13.0		
1 - Uniform (PSF)	0 to 7' 7" (Front)	9' 8"	15.0	40.0	FLOOR
2 - Uniform (PSF)	0 to 7' 7" (Front)	2' 9"	18.0	60.0	DECK


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

DADU Floor, Stair Stringer 1 piece(s) 4 x 12 DF No.2

Sloped Length: 15' 11 1/8"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1008 @ 2"	7656 (3.50")	Passed (13%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	845 @ 1' 7/8"	4725	Passed (18%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3172 @ 6' 7 1/2"	6091	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.109 @ 6' 7 1/2"	0.776	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.207 @ 6' 7 1/2"	1.035	Passed (L/900)		1.0 D + 1.0 L (All Spans)

Member Length: 16' 6 5/8"

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 8/12

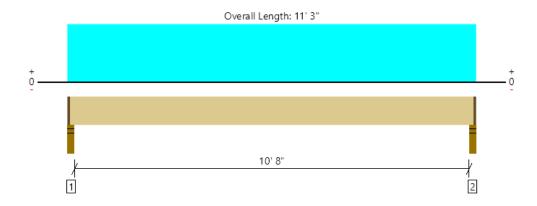
- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Beveled Plate - DF	3.50"	3.50"	1.50"	478	530	1008	Blocking
2 - Beveled Plate - DF	3.50"	3.50"	1.50"	478	530	1008	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 11" o/c	
Bottom Edge (Lu)	15' 11" o/c	

[•]Maximum allowable bracing intervals based on applied load.


Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 13' 3"	N/A	10.0		
1 - Uniform (PSF)	0 to 13' 3"	2'	15.0	40.0	stairs
2 - Uniform (PLF)	0 to 13' 3"	N/A	20.0	-	railing

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

DADU Floor, UB3 - deck edge 1 piece(s) 6 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1196 @ 2"	7734 (2.25")	Passed (15%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1020 @ 11"	4675	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3228 @ 5' 7 1/2"	5156	Passed (63%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.170 @ 5' 7 1/2"	0.273	Passed (L/769)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.224 @ 5' 7 1/2"	0.546	Passed (L/585)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

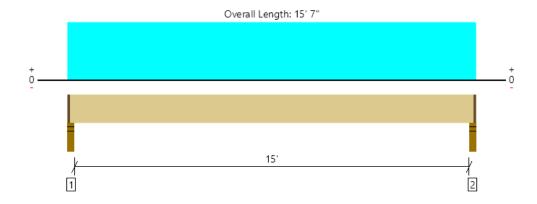
- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	290	928	1218	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	290	928	1218	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 1" o/c	
Bottom Edge (Lu)	11' 1" o/c	

[•]Maximum allowable bracing intervals based on applied load.


			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 11' 1 3/4"	N/A	10.4		
1 - Uniform (PSF)	0 to 11' 3" (Front)	2' 9"	15.0	60.0	deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

DADU Floor, UB4 - (E) Deck cantilever 1 piece(s) 4 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	463 @ 2"	4922 (2.25")	Passed (9%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	405 @ 1' 3/4"	3885	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1750 @ 7' 9 1/2"	4492	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.132 @ 7' 9 1/2"	0.381	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.198 @ 7' 9 1/2"	0.762	Passed (L/923)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	157	312	468	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	157	312	468	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 5" o/c	
Bottom Edge (Lu)	15' 5" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 15' 5 3/4"	N/A	8.2		
1 - Uniform (PSF)	0 to 15' 7" (Front)	1'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

QUANTUM | CONSULTING ENGINEERS

1511 Third Avenue, Suite 323 Seattle, WA 98101 TEL 206.957.3900 FAX 206.957.3901

SIPIORA RESIDENCE DADU

7215 93RD AVE SE MERCER ISLAND, WA 98040

QUANTUM JOB NUMBER: 22580.02

LATERAL DESIGN

QUANTUM

CONSULTING ENGINEERS

1511 Third Avenue, Suite 323 T. 206.957.3900 Seattle, WA 98101 F. 206.957.3901

Project	Sipiora DADU	Job # 22580.02
Client	Lainie Sipiora	By BSD
Subject	Seismic Dead Load	Date: 5/16/2023

SEISMIC DEAD LOAD

ROOF

ELEMENT	AREA	UNIT WT.	WEIGHT	
	(FT ²)	(PSF)	(LB)	
ROOF FRAMING	830.0	15.0	12450	
EXTERIOR WALLS	220.0	10.0	2200	
INT. WALLS	150.0	8.0	1200	

TOTAL DL 15850 LB

UPPER FLOOR

ELEMENT	AREA	UNIT WT.	WEIGHT
	(FT ²)	(PSF)	(LB)
FLOOR FRAMING	480.0	12.0	5760
DECK FRAMING	135.0	18.0	2430
EXTERIOR WALLS	520.0	10.0	5200
INT. WALLS	150.0	8.0	1200

TOTAL DL 14590 LB

	1	Quantum Consulting Engineers LLC	Project:	Sipiora Residence	Date:	5/16/23
		1511 Third Avenue, Suite 323			Designer:	BSD
		Seattle, WA 98101	Client:	Lainie Sipiora	Job#	22580

Seismic Base Shear for the Equivalent Lateral Force Procedure

Per IBC 2018 & ASCE 7-16

Structure: Sipiora Residence DADU

Address: Mercer Island

Latitude: Longitude:

Structure Classification

Risk Category : II per ASCE Table 1.5-1

Seismic Force-Resisting System: Light-Framed Wood Walls Sheathed with Structural Panels

R: 6 1/2 per ASCE Table 12.2-1 W_o : 3 per ASCE Table 12.2-1 C_d : 4 per ASCE Table 12.2-1

h_n (ft): 25.00 height above the base to the highest level of the structure

Site Ground Motion

Reg. Structure/5 Stories Max: S_1 (g-sec): S_2 (g-sec): S_3 (g-sec): S_3 (g-sec): S_3 (g-sec): S_3 (g-sec): S_3 per ASCE 11.4.3

ASCE 11.4.8 Exception 2 Used

F_v 1.80 F_a 1.20

1.2 Min Value where SC D Assumed

 S_{M1} (g-sec): 0.90 S_{MS} (g-sec): 1.74 per ASCE 11.4.4 S_{D1} (g-sec): 0.60 S_{DS} (g-sec): 1.16 per ASCE 11.4.5

SDC: **D** per ASCE 11.6 I_E: **1.00** per ASCE Table 1.5-2

Fundamental Period per ASCE 12.8.2

Period Method: Approximate Fundamental Period
Structure Type: All Other Structural Systems

T_L (sec): 6.00 ASCE Figures 22-14 through 22-17

 $T_s: 0.52$

Ta (sec): 0.22 Ct * hnx per ASCE Eq. 12.8-7

 T_{use} (sec): 0.22 $\stackrel{\cdot}{\sim}$ <= TL

Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8

 C_s : 0.18 = $S_{DS}/(R/I_E)$ per ASCE Eq. 12.8-2

 C_{s-max} : 0.41 = $S_{D1}/(T_a*R/I_E)$ for T <= T_L per ASCE Eq. 12.8-3 C_{s-max} : -- = $S_{D1}*T_L/(T_a^2*R/I_E)$ for T > T_L per ASCE Eq. 12.8-4

 C_{s-min} : 0.05 per ASCE Eq. 12.8-5

 C_{s-min} : -- = 0.5S₁ / (R/I_E) for S₁ => 0.6g per ASCE Eq. 12.8-6

C_{s-use}: 0.18

V: 0.178 W = C_{S-use} * W per ASCE Eq. 12.8-1

Quantum Consulting Engineers LLC	Project:	Sipiora DADU	Date:	5/16/23	Job No:	22580.02
1511 Third Avenue, Suite 323			Designer:	BSD	Sheet:	1
Seattle, WA 98101	Client:	Lainie Sipiora	Checked By:			

Vert. Distribution of Seismic Forces for the Equiv. Lateral Force Procedure

Per IBC 2018 & ASCE 7-16

Structure: Sipiora Residence DADU

Seismic Parameters

1.00 per ASCE Table 1.5-2 I_E:

S_{DS} (g-sec): 1.16 per ASCE 11.4.4 Period (Sec): 0.22 per ASCE 12.8.2.1 1.00 per ASCE 12.8.3

Vertical Distribution of Seismic Forces per ASCE 12.8.3

 $F_x = C_{vx}V$ per ASCE Eq. 12.8-11

 $C_{vx} = (w_x h_x^k)/(Sw_i h_i^k)$ per ASCE Eq. 12.8-12

Level	h _x (ft)	w _x (k)	% of W _{total}	$w_x * h_x^k$	C _{vx} (%)	$F_{x}(k)$	$V_{x}(k)$
Roof	18.00	15.85	52.1%	285.3	71.0%	3.86	3.86
Upper	8.00	14.59	47.9%	116.7	29.0%	1.58	5.43
				·			

Total WT (k):

30.44

402 Sum:

 C_{s-use} : 0.178

V (k): 5.43 per ASCE 12.8.1

Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

 $F_{px} = (SF_i/Sw_i) * w_{px} per ASCE Eq 12.10-1$

 $F_{px-max} = 0.4 S_{DS} I_{E} w_{px}$ per per ASCE 12.10.1.1

 $F_{px-min} = 0.2 * S_{DS} * I_{E} * w_{px} per per ASCE 12.10.1.1$

Level	w _{px} (k)	Σw _i (k)	$F_{x}(k)$	$\Sigma F_{i}(k)$	F _{px} (k)	Notes	Force Rat
Roof	15.85	15.85	3.86	3.86	3.86		1.000
Upper	14.59	30.44	1.58	5.43	3.38	= Fp-min	2.146
		i —				1	•

Diaphragm/Story

e Ratio

6	1	Quantum Consulting Engineers LLC	Project:	Sipiora DADU	Date: 5/16/23	Job No:	22580.02
		1511 Third Avenue, Suite 323			Designer: BSD	Sheet:	2
		Seattle, WA 98101	Client:	Lainie Sipiora	Checked By:		

Wind Loads Criteria

ASCE 7-16

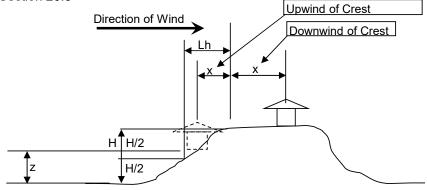
Wind Load Criteria

Risk Category: Basic Wind Speed: 97 Exposure Category: C

Ground Elevation: 240 ft Wall Ht: **25.0 ft**

Table 1.5-1 Figure 26.5.1 Section 26.7.3

Roof Slope: Mean Roof HT: Parapet:


Roof Type: Monoslope Roof 4.0:12 25.0 ft No

18.4 DEG **UP TO 160FT**

UP TO 160FT

Wind Topographic Factor, K zt:

per Section 26.8

Terrain Type: Direction:

2-dimensional escarpments **Upwind of Crest**

H: 10 ft X:

z:

30 ft

 L_h : 100 ft dist upwind of crest to half HT of Hill or escarp. HT. OF HILL OR ESCARP. RELATIVE TO THE UPWIND TERRAIN

DIST. (UPWIND OR DOWNWIND) FROM THE CREST TO THE BUILDING HEIGHT ABOVE GROUND SURFACE AT BUILDING SITE

K_{zt}: 1.00 **EQUATION 26.8-1** K_{zt} : MANUALLY INPUT

0.991 ASCE 26.10.1

K_d: 0.85 ASCE 26.6

Quantum Consulting Engineers LLC
1511 Third Avenue, Suite 323
Seattle, WA 98101

Project:	Sipiora Residence
	DADU
Client:	Lainie Siniora

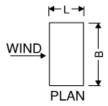
5/16/23 Date: Designer: **BSD** Checked By:

Job No: 22580.02 Sheet:

Wind Loads - Main Wind Force Resisting System

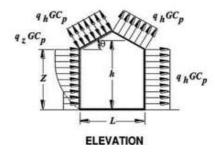
ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft

Wind Load Criteria


Risk Category: II Table 1.5-1 K_e : 0.9913 Section 26.10.1 Basic Wind Speed: 97 mph Figure 26.5.1 K_d : 0.85 Section 26.6 Exposure Category: C Section 26.7.3 K_d : 0.85 Section 26.11

K_{zt}: **1.00** Section 26.8 Wall Height: **25.0** ft

Wall Pressures:


L/B Ratio:

Short Dimension: 25.0 ft
Long Dimension: 25.0 ft
Transverse Wind L/B: 1.00
Longitudinal Wind L/B: 1.00

*NOTE: INTERNAL BUILDING PRESSURE CANCEL EACH OTHER OUT IN ENCLOSED BUILDING

 $K_h \& K_z$: 0.945 At Top of Wall K_7 : 0.85 0 ft to 15 ft

<u>Transverse</u> <u>Wind Direction</u>

Wind Direction
Top of Wall: 21.2 psf 21.2 psf
0 ft to 15 ft Wall: 19.9 psf 19.9 psf

Longitudinal

ASCE EQ 27.3-1 ASCE EQ 27.3-1

*Enveloped Leeward and Windward Pressure

*All Values Ultimate (multiply x0.6 for ASD)

Quantum Consulting Engineers LLC
1511 Third Avenue, Suite 323
Spattle WA 98101

Project:	Sipiora Residence	Date: 5/16/23	Job No:	22580.02
	DADU	Designer: BSD	Sheet:	2
Client:	Lainie Sipiora	Checked By:		

ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft

Roof Pressure:

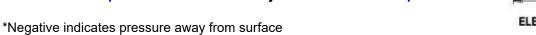
Slope: 18.4 **DEGREES** 4.0:12

Mean Roof HT: 25.0 ft

Building Dimension: 40.0 ft Parallel to Ridge Building Dimension: 40.0 ft Normal to Ridge

 $K_h \& K_z$: 0.945 At Mean Roof Ht

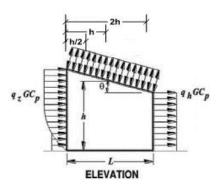
Windward Pressure Parallel to Ridge

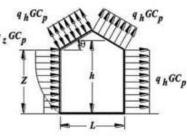

	LC 1	LC 2
0 to h/2	-23.0 psf	0.5 psf
h/2 to h	-15.7 psf	0.5 psf
h to 2h	-14.1 psf	0.5 psf
>2h	-13.2 psf	0.5 psf

Horizontal Projected Pressure: 0.3 psf 1.0 psf

Leeward Pressure Normal to Ridge

Horizontal Projected Pressure: -4.1 psf -13.1 psf


LC 1


LC₂

Roof Overhang (PSF)

P_{ovh}: -26.2 psf Horizontal Projected Pressure: -8.3 psf

Minimum Total Projected Horizontal Pressure (PSF) 8.0 psf ASCE 27.1.5

Project:	Sipiora Residence	Date:	5/16/23	Job No:	#######
	DADU	Designer:	BSD	Sheet:	3
Client:	Lainie Sipiora	Checked By:			

^{*}Total horizontal shear shall not be less than that determined by neglecting roof wind forces

^{*}All Values Ultimate (multiply x0.6 for ASD)

Structure: **Sipiora DADU** Floor Level: **Upper Level**

Sds = 1.16

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) = 17.25

Shear Wall Line Information

SW Mark		L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	1	24.00	-	-	-	-	-	-	-	-	-
SW Segment	1.10	24.00	7.50	0.31	DF #2	0.50	Interstory	7.50	10.0	4.0	15.0
SW GRID	3	5.50	-	-	-	-	-	-	-	-	-
SW Segment	3.10	3.00	7.00	2.33	DF #2	0.50	Interstory	9.75	10.0	9.0	15.0
SW Segment	3.20	2.50	7.00	2.80	DF #2	0.50	Interstory	9.75	10.0	9.0	15.0
SW GRID SW Segment	A A.1	2.50 2.50	7.50	3.00	DF #2	0.50	- Interstory	8.50	10.0	2.0	15.0
SW GRID	С	9.50	_	_	_	-	-	_	_	_	_
SW Segment	C.1	9.50	10.00	1.05	DF #2	0.50	Interstory	10.00	10.0	2.0	15.0
										1	

Shear Wall Loads and Summary

SW Mark		EQ (lb) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	1	1930	1650	-	-	-	-	-	-
SW Segment	1.10	1930	1650	3240			SW-6	2	No Strap
SW GRID	3	1930	1650				-	-	-
SW Segment	3.10	1053	900	698			SW-6	2	MSTC40 (3070 max.)
SW Segment	3.20	877	750	581			SW-6	2	MSTC40 (3070 max.)
SW GRID	Α	1930	2875				-	-	-
SW Segment	A.1	1930	2875	288			SW-2	2	MSTC66 (5850 max.)
au ann		1000	0075						
SW GRID	C	1930	2875	4005			-	-	- MOTO 40 (0070)
SW Segment	C.1	1930	2875	1235			SW-6	2	MSTC40 (3070 max.)

Quantum Consulting Engineers LLC	Project: Sipiora DADU	Date:	5/16/23	Job No:	22580.01
1511 Third Avenue, Suite 323		Designer:	BSD	Sheet:	1
Seattle, WA 98101	Client: Lainie Sipiora	Checked By:			

Structure: **Sipiora DADU** Floor Level: **Upper Level**

hear Wall Schedule (LF	RFD)			φ _D =	0.8		
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G _a (lb/in)
SW-6	APA Rated, 7/16", 8d Common	6	520	416	730	584	10
SW-4	APA Rated, 7/16", 8d Common	4	760	608	1065	852	13
SW-3	APA Rated, 7/16", 8d Common	3	980	784	1370	1096	15
SW-2	APA Rated, 7/16", 8d Common	2	1280	1024	1790	1432	20
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

**See SDPWS Table 4.3A Note 2

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.10	80	1.00	80	69	69	80	SW-6	416	OK	Seismic
3.10	351	0.96	366	300	313	366	SW-6	416	ОК	Seismic
3.20	351	0.90	390	300	333	390	SW-6	416	OK	Seismic
A.1	772	0.88	882	1150	1314	1314	SW-2	1432	OK	Wind
C.1	203	1.00	203	303	303	303	SW-6	584	OK	Wind

*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{OT} Leve Arm (ft)
1.10	24.00	23.79	0.88%	No	
					1
3.10	3.00	2.79	7.46%	No	
3.20	2.50	2.29	9.09%	No	
A.1	2.50	2.29	9.09%	No	
					<u> </u>
C.1	9.50	9.29	2.24%	No	

Quantum Consulting Engineers LLC	Project: Sipiora DADU	Date:	5/16/23	Job No:	22580.01
1511 Third Avenue, Suite 323		Designer:	BSD	Sheet:	3
Seattle, WA 98101	Client: Lainie Sipiora	Checked By:			

Structure: **Sipiora DADU** Floor Level: **Upper Level**

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (lb)	ASD Seismic Tension Above (lb)	Seismic Tension Total (lb)	Wind Tension (lb)	ASD Wind Tension Above (lb)	Wind Tension Total (lb)	End 1 Dead (lb)	End 2 Dead (lb)
1.10	422		422	309		309	1620	1620
3.10	2395		2395	1755		1755	349	349
3.20	2395		2395	1755		1755	291	291
A.1	4593		4593	5865		5865	144	144
C.1	1422		1422	1816		1816	618	618

Determine Required Holdown (ASD)

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (lb)	Status
1.10	663	287	663	287	287	No Strap	0	OK
3.10	-1546	-2242	-1546	-2242		MSTC40 (3070 max.)	-2686	OK
3.20	-1581	-2268	-1581	-2268	-2268	MSTC40 (3070 max.)	-2686	OK
A.1	-5779	-4530	-5779	-4530	-5779	MSTC66 (5850 max.)	-5850	OK
A.1	-5119	-4550	-5119	-4550	-5779	wis redo (3630 max.)	-3030	UK
C.1	-1445	-1152	-1445	-1152	-1445	MSTC40 (3070 max.)	-2686	OK

Quantum Consulting Engineers LLC	Project: Sipiora DADU	Date:	5/16/23	Job No:	22580.01
1511 Third Avenue, Suite 323		Designer:	BSD	Sheet:	3
Seattle, WA 98101	Client: Lainie Sipiora	Checked By:	•		

Structure: Sipiora DADU Floor Level: Main Level

> Sds = 1.16

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) = 17.25

Shear Wall Line Information

SW Mark	(L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	1	24.00	-	-	-	-	-	-	-	-	-
SW Segment	1.10	24.00	8.00	0.33	DF #2	0.50	Base	8.00	10.0	9.5	15.0
SW GRID	3	13.17	-	-	-		•	-	-	-	-
SW Segment	3.10	3.00	8.00	2.67	DF #2	0.50	Base	8.00	10.0	9.5	15.0
SW Segment	3.20	10.17	8.00	0.79	DF #2	0.50	Base	8.00	10.0	9.5	15.0
SW GRID	Α	7.25	-	-	-	-	=	-	-	-	-
					DF #2		Base	8.00	10.0	2.0	15.0
SW Segment	A.2	7.25	8.00	1.10	DF #2	0.50	Base	8.00	10.0	2.0	18.0
SW GRID	В	15.00	-	-	-	-	-	-	-	-	-
SW Segment	B.1	15.00	8.00	0.53	DF #2	0.50	Base	8.00	10.0	2.0	15.0

Shear Wall Loads and Summary

SW Mark		EQ (lb) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	1	2715	4025	-	-	-	-	-	-
SW Segment	1.10	2715	4025	5340			SW-6	2	No HD
SW GRID	3	2715	4025				-	-	-
SW Segment	3.10	618	917	668			SW-6	2	HDU4 (4565DF, 3285HF)
SW Segment	3.20	2097	3108	2263			SW-6	2	HDU2 (3075DF,2215HF)
SW GRID	Α	2715	5345				-	-	-
SW Segment	A.2	2715	5345	841			SW-4	2	HDU4 (4565DF, 3285HF)
SW GRID	В	2715	5345				-	-	-
SW Segment	B.1	2715	5345	1650			SW-6	2	HDU2 (3075DF,2215HF)

Quantum Consulting Engineers LLC	Project: Sipiora DADU	Date:	5/16/23	Job No:	22580.01
1511 Third Avenue, Suite 323		Designer:	BSD	Sheet:	1
Seattle, WA 98101	Client: Lainie Sipiora	Checked By:			

Structure: **Sipiora DADU** Floor Level: **Main Level**

Shear Wall Schedule (LI	RFD)			φ _D =	0.8		
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G _a (lb/in)
SW-6	APA Rated, 7/16", 8d Common	6	520	416	730	584	10
SW-4	APA Rated, 7/16", 8d Common	4	760	608	1065	852	13
SW-3	APA Rated, 7/16", 8d Common	3	980	784	1370	1096	15
SW-2	APA Rated, 7/16", 8d Common	2	1280	1024	1790	1432	20
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

**See SDPWS Table 4.3A Note 2

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.10	113	1.00	113	168	168	168	SW-6	584	OK	Wind
2.40	200	0.00	005	200	200	200	014/ 0	504	01/	Mind
3.10 3.20	206 206	0.92 1.00	225 206	306 306	333 306	333 306	SW-6 SW-6	584 584	OK OK	Wind Wind
	200	1.00	200					55.		
							SW-2			
A.2	374	1.00	374	737	737	737	SW-4	852	OK	Wind
B.1	181	1.00	181	356	356	356	SW-6	584	OK	Wind
									•	

*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{OT} Lever Arm (ft)
1.10	24.00	23.63	1.59%	No	
3.10	3.00	2.52	19.25%	No	
3.20	10.17	9.69	5.00%	No	
				No	
A.2	7.25	6.77	7.16%	No	
B.1	15.00	14.52	3.34%	No	

Quantun	Consulting Engineers LLC	Project: Sipiora DADU	Date:	5/16/23	Job No:	22580.01
7511 Thir	d Avenue, Suite 323	·	Designer:	BSD	Sheet:	3
Seattle, V	VA 98101	Client: Lainie Sipiora	Checked By:			

Structure: Sipiora DADU Floor Level: Main Level

Shear Wall End Axial Load (ASD)

Seismic Tension (lb)	ASD Seismic Tension Above (lb)	Seismic Tension Total (lb)	Wind Tension (lb)	ASD Wind Tension Above (lb)	Wind Tension Total (lb)	End 1 Dead (lb)	End 2 Dead (lb)
634	422	1056	805	309	1114	2670	2670
1154	2395	3549	1467	1755	3222	334	334
1154	2395	3549	1467	1755	3222	1131	1131
	4593			5865			
2097	4000	2097	3539	3003	3539	421	421
4044	4400	0.400	4740	4040	0500	005	005
1014	1422	2436	1710	1816	3526	825	825
	1154 1154	Tension (lb) Tension Above (lb) 634 422 1154 2395 1154 2395 1154 2395 2097	Tension (lb)	Tension (lb)	Tension Tension Tension Tension Tension Tension Above (lb) Tension Tension Tension Above (lb) Tension Tension Above (lb) Tension Tensi	Tension (lb)	Tension (lb)

Determine Required Holdown (ASD)

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	~ I		Status
1.10	488	113	488	113	113	No HD	0	OK
3.10	-3022	-3403	-3022	-3403	-3403	HDU4 (4565DF, 3285HF)	-4565	OK
3.20	-2543	-3054	-2543	-3054	-3054	HDU2 (3075DF,2215HF)	-3075	OK
						HDU8 (3) Studs (7870DF, 6580	HE	
A.2	-3286	-1913	-3286	-1913	-3286	HDU4 (4565DF, 3285HF)	-4565	ок
B.1	-3031	-2075	-3031	-2075	-3031	HDU2 (3075DF,2215HF)	-3075	ОК

Quantum Consulting Engineers LLC	Project: Sipiora DADU	Date:	5/16/23	Job No:	22580.01
1511 Third Avenue, Suite 323		Designer:	BSD	Sheet:	3
Seattle, WA 98101	Client: Lainie Sipiora	Checked By:			